http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7692926-B2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d77e41992c5ab00f618aaf91ce7fe058
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S165-218
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T29-49396
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-09701
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-0002
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L23-427
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F28D15-043
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H05K7-20
filingDate 2007-10-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2010-04-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d9dad5bd0062ad3bce43649a675fd04f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1fdadcf10a289b2f452c98d841dd5e9c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1d428954ede2524005997ff308b22d28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a37c5646560b6744e8d2a38479d39aad
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a237af58e6b67b9ea8a8c295518eb54b
publicationDate 2010-04-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-7692926-B2
titleOfInvention Integrated thermal systems
abstract The present invention is a MEMS-based two-phase LHP (loop heat pipe) and CPL (capillary pumped loop) using semiconductor grade silicon and microlithographic/anisotropic etching techniques to achieve a planar configuration. The principal working material is silicon (and compatible borosilicate glass where necessary), particularly compatible with the cooling needs for electronic and computer chips and package cooling. The microloop heat pipes (μLHP™) utilize cutting edge microfabrication techniques. The device has no pump or moving parts, and is capable of moving heat at high power densities, using revolutionary coherent porous silicon (CPS) wicks. The CPS wicks minimize packaging thermal mismatch stress and improves strength-to-weight ratio. Also burst-through pressures can be controlled as the diameter of the coherent pores can be controlled on a sub-micron scale. The two phase planar operation provides extremely low specific thermal resistance (20-60 w/cm 2 ). The operation is dependent upon a unique micropatterened CPS wick which contains up to millions per square centimeter of stacked uniform micro-through-capillaries in semiconductor-grade silicon, which serve as the capillary “engine,” as opposed to the stochastic distribution of pores in the typical heat pipe wick. As with all heat pipes, cooling occurs by virtue of the extraction of heat by the latent heat of phase change of the operating fluid into vapor.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010132404-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2019190811-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8188595-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9905532-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9343436-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9052147-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10234213-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2020050092-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2015369541-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014221214-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2012273167-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8780560-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11003808-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10132560-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9812378-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2015021755-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013044432-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010038660-A1
priorityDate 2005-09-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-02086994-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008115913-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4825661-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008115912-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2003192669-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008110598-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2003066625-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/DE-10011253-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7205665-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7431071-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6889755-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/DE-102004011394-B3
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007095507-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2006276047-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2006076046-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2003075306-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4874484-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7120022-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2003211791-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-0296348-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2002135980-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549336
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559541
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23978
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID418354341
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID123279
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449266279
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID334898
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID15913
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID334898
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5461123
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16028
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID136121905
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456988458

Total number of triples: 73.