http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2017170018-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_8cf8d77ac0eff1767b22d2fb9445b64d
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-265
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02315
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02274
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-0257
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-2254
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-42392
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-3242
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-3215
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-6659
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-2236
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-66795
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-66803
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-31
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-31
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-324
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-223
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-36
filingDate 2015-12-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a85b87c2d4821b06528e8a5237449d74
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3147557f5bf7aab28cfa2edf1fc4c6a3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d07f2bdd9f01297083779336e2c14e49
publicationDate 2017-06-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2017170018-A1
titleOfInvention Conformal doping using dopant gas on hydrogen plasma treated surface
abstract Well-controlled, conformal doping of semiconductor substrates may be achieved by low temperature hydrogen-containing plasma treatment prior to gas phase doping. Substrates doped in this manner may be capped and annealed for thermal drive-in of the dopant. The technique is particularly applicable to the formation of ultrashallow junctions (USJs) in three-dimensional ( 3 D) semiconductor structures, such as FinFET and Gate-All-Around (GAA) devices.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2020106680-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9911660-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2022223381-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-4195288-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11373871-B2
priorityDate 2015-12-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2004219789-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2011186817-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013115763-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2012238074-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014035706-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23969
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419548998

Total number of triples: 43.