http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013247951-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_8ee0da6543d4d16f0634e75baf2d0d58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9ff3d1dbec5f04d6ad3f313c4a5045d2
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N10-857
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N10-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N10-852
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L35-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L35-34
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L35-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L35-16
filingDate 2013-03-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7342b430c3d1a992f3357eff9b12430c
publicationDate 2013-09-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2013247951-A1
titleOfInvention Thermoelectric material with high cross-plane electrical conductivity in the presence of a potential barrier
abstract Embodiments of a thermoelectric material having high cross-plane electrical conductivity in the presence of one or more Seebeck coefficient enhancing potential barriers and methods of fabrication thereof are disclosed. In one embodiment, a thermoelectric material includes a first matrix material layer, a barrier layer, and a second matrix material layer. The barrier layer is a short-period superlattice structure that includes multiple superlattice layers. Each superlattice layer has a high energy sub-band and a low energy sub-band. For each superlattice layer, the energy level of the high energy sub-band of the superlattice layer is resonant with the energy level of the low energy level sub-band of an adjacent superlattice layer and/or the energy level of the low energy sub-band of the superlattice layer is resonant with the energy level of the high energy sub-band of an adjacent superlattice layer. As a result, cross-plane electrical conductivity of the thermoelectric material is improved.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2018040714-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10249745-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9683933-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014117238-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10170604-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10170603-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/RU-2788972-C2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10453945-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-105655473-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2018040743-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2018040725-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-109791953-A
priorityDate 2012-03-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559218
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447795180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6326970
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426105649
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6432049
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID73978

Total number of triples: 35.