http://rdf.ncbi.nlm.nih.gov/pubchem/patent/TW-202235642-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ba608855553bc2687e16ffaec18cc8c4
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J2237-20214
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J2237-332
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J2237-334
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C14-021
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C14-0036
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02631
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C14-505
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C14-541
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-3065
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J37-32568
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C14-35
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C14-0617
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-0254
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02661
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J37-32715
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J37-3405
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C14-54
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-203
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C14-14
filingDate 2021-10-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3a7833af1728b1b0ff88dbf2f717dd12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_78521f64c1f5d3777a22d4301f6e48d2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_76cbf47ff2d269fe1e68645febb4e74c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_14d1c204ff5da278fb85ff46bb60ee6c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_39e349d0607f565af1e2dec2c8f1f29a
publicationDate 2022-09-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber TW-202235642-A
titleOfInvention Systems and methods for unprecedented crystalline quality in physical vapor deposition-based ultra-thin aluminum nitride films
abstract The present invention provides a method for depositing an ultra-thin film onto a wafer. The method comprising the following steps. A sputtering chamber is provided wherein the sputtering chamber is collectively defined by a wafer handling apparatus and a magnetron. The wafer is placed onto a wafer chuck of the wafer handling apparatus. The wafer chuck is moved to a first distance to the magnetron. A gas is introduced into the sputtering chamber such that the gas is separated into a plasma, wherein the plasma includes gas ions. A first negative potential is applied to at least one sputtering target of the magnetron while the wafer chuck with the wafer is at the first distance to the magnetron. The wafer chuck is moved to a second distance to the magnetron. A second negative potential is applied to at least one sputtering target of the magnetron while the wafer chuck with the wafer is at the second distance to the magnetron. The wafer is removed from the wafer chuck after the application of the second negative potential to at least one sputtering target of the magnetron.
priorityDate 2020-10-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559503
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID90455

Total number of triples: 34.