http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-101866004-B1

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-122
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-0426
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C16-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-139
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-625
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-0471
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-13
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-364
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-366
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C16-4417
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-386
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-587
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-38
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-587
filingDate 2015-12-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2018-06-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2018-06-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-101866004-B1
titleOfInvention Nano-silicon composite negative electrode material used for lithium ion battery, process for preparing the same and lithium ion battery
abstract The present invention relates to a graphite matrix, a nanosilicon composite anode active material comprising a nanosilicon material uniformly deposited within a graphite matrix. The nanosilicon composite anode active material is prepared by chemical vapor deposition of nanosilicon particles in hollow graphite using a silicon source. The nanosilicon composite anode active material according to the present invention has a high specific capacity (> 1000 mAh / g), a high initial charge / discharge efficiency (> 93%) and a high conductivity characteristic. The manufacturing method according to the present invention is simple in operation, easy to control, low in production cost, and suitable for industrial production.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20200095017-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20200095013-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-102091941-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-102091942-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20200132696-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2021112300-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20210071246-A
priorityDate 2015-01-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2010525549-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2010501970-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426098976
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491870
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5461123
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559541
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28486
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6327210
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559546
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6326

Total number of triples: 49.