http://rdf.ncbi.nlm.nih.gov/pubchem/reference/6703900

Outgoing Links

Predicate Object
contentType Journal Article
endingPage 5912
issn 0305-1048
1362-4962
issueIdentifier 10
pageRange 5901-5912
publicationName Nucleic Acids Research
startingPage 5901
bibliographicCitation Chitale S, Richly H. DICER and ZRF1 contribute to chromatin decondensation during nucleotide excision repair. Nucleic Acids Res. 2017 Jun 02;45(10):5901–12. PMID: 28402505; PMCID: PMC5449631.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_98f152466d6e18127df8889c182e86b5
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_651353d2c188af37d9fcb183743598e4
date 2017-04-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
identifier https://doi.org/10.1093/nar/gkx261
https://pubmed.ncbi.nlm.nih.gov/PMC5449631
https://pubmed.ncbi.nlm.nih.gov/28402505
isPartOf http://rdf.ncbi.nlm.nih.gov/pubchem/journal/6133
https://portal.issn.org/resource/ISSN/1362-4962
https://portal.issn.org/resource/ISSN/0305-1048
language English
source https://pubmed.ncbi.nlm.nih.gov/
https://www.crossref.org/
title DICER and ZRF1 contribute to chromatin decondensation during nucleotide excision repair
discusses http://id.nlm.nih.gov/mesh/M0025317
http://id.nlm.nih.gov/mesh/M0369737
http://id.nlm.nih.gov/mesh/M0004370
http://id.nlm.nih.gov/mesh/M0493668
http://id.nlm.nih.gov/mesh/M0483208
http://id.nlm.nih.gov/mesh/M0371567
http://id.nlm.nih.gov/mesh/M0078718
http://id.nlm.nih.gov/mesh/M0023873
http://id.nlm.nih.gov/mesh/M0006678
http://id.nlm.nih.gov/mesh/M0362764
http://id.nlm.nih.gov/mesh/M0010429
http://id.nlm.nih.gov/mesh/M000613201
http://id.nlm.nih.gov/mesh/M0028186
hasPrimarySubjectTerm http://id.nlm.nih.gov/mesh/D043244Q000235
http://id.nlm.nih.gov/mesh/D017173Q000235
http://id.nlm.nih.gov/mesh/D002843Q000737
http://id.nlm.nih.gov/mesh/D004268Q000235
http://id.nlm.nih.gov/mesh/D004260
http://id.nlm.nih.gov/mesh/D015513Q000235
http://id.nlm.nih.gov/mesh/D053487Q000235
hasSubjectTerm http://id.nlm.nih.gov/mesh/D002843Q000378
http://id.nlm.nih.gov/mesh/D000071137Q000378
http://id.nlm.nih.gov/mesh/D017173Q000528
http://id.nlm.nih.gov/mesh/D057809
http://id.nlm.nih.gov/mesh/D042002
http://id.nlm.nih.gov/mesh/D005347Q000166
http://id.nlm.nih.gov/mesh/D018832
http://id.nlm.nih.gov/mesh/D000818
http://id.nlm.nih.gov/mesh/D025801Q000235
http://id.nlm.nih.gov/mesh/D000071137Q000235
http://id.nlm.nih.gov/mesh/D017173Q000254
http://id.nlm.nih.gov/mesh/D017173Q000378
http://id.nlm.nih.gov/mesh/D016601
http://id.nlm.nih.gov/mesh/D025801Q000378
http://id.nlm.nih.gov/mesh/D006657Q000378
http://id.nlm.nih.gov/mesh/D004249
http://id.nlm.nih.gov/mesh/D006801
http://id.nlm.nih.gov/mesh/D010006Q000378
http://id.nlm.nih.gov/mesh/D014466
http://id.nlm.nih.gov/mesh/D015513Q000378
http://id.nlm.nih.gov/mesh/D002460
http://id.nlm.nih.gov/mesh/D010006Q000166
http://id.nlm.nih.gov/mesh/D005347Q000528
http://id.nlm.nih.gov/mesh/D005347Q000378
http://id.nlm.nih.gov/mesh/D053487Q000378
http://id.nlm.nih.gov/mesh/D006657Q000235
http://id.nlm.nih.gov/mesh/D043244Q000378
http://id.nlm.nih.gov/mesh/D004268Q000378
http://id.nlm.nih.gov/mesh/D045744
http://id.nlm.nih.gov/mesh/D010006Q000528
discussesAsDerivedByTextMining http://rdf.ncbi.nlm.nih.gov/pubchem/gene/MD5_cb9108c92a88b9e29fc331b2cbfd8767
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/MD5_5d0361490d0b2c0fa8c4127b7908fcfe
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/MD5_5f8f19d61252fdce5cae1f415ad035b2
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/MD5_2a9da9d818ce47a42757bc1e231e21b7
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/MD5_a5771765a6f854a70a6c627bfc47f1db
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/MD5_29ba841b9e77325337e7b0336540a5eb

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID27000
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID142
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID23405

Total number of triples: 81.