http://rdf.ncbi.nlm.nih.gov/pubchem/reference/24365899

Outgoing Links

Predicate Object
contentType Journal Article
endingPage 139
issn 0166-445X
pageRange 130-139
publicationName Aquatic toxicology (Amsterdam, Netherlands)
startingPage 130
bibliographicCitation Aderemi AO, Novais SC, Lemos MFL, Alves LM, Hunter C, Pahl O. Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics. Aquat Toxicol. 2018 Oct;203():130–9. doi: 10.1016/j.aquatox.2018.08.008. PMID: 30125766.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0002-1317-1672
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0001-9887-1864
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_5208b2bea1dec4b0850e6f5c23d06092
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_d855900960de08ff9823413730b95d38
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0003-1306-3396
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0001-5106-7430
date 201810
identifier https://doi.org/10.1016/j.aquatox.2018.08.008
https://pubmed.ncbi.nlm.nih.gov/30125766
isPartOf http://rdf.ncbi.nlm.nih.gov/pubchem/journal/21488
https://portal.issn.org/resource/ISSN/0166-445X
language English
source https://pubmed.ncbi.nlm.nih.gov/
https://www.crossref.org/
title Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics
discusses http://id.nlm.nih.gov/mesh/M0020750
http://id.nlm.nih.gov/mesh/M0004498
http://id.nlm.nih.gov/mesh/M0007715
http://id.nlm.nih.gov/mesh/M0022890
http://id.nlm.nih.gov/mesh/M0448397
http://id.nlm.nih.gov/mesh/M0003613
http://id.nlm.nih.gov/mesh/M0026249
http://id.nlm.nih.gov/mesh/M0020832
hasPrimarySubjectTerm http://id.nlm.nih.gov/mesh/D004734Q000187
http://id.nlm.nih.gov/mesh/D000460Q000378
http://id.nlm.nih.gov/mesh/D000900Q000633
http://id.nlm.nih.gov/mesh/D004781
http://id.nlm.nih.gov/mesh/D058086Q000378
http://id.nlm.nih.gov/mesh/D018384Q000187
hasSubjectTerm http://id.nlm.nih.gov/mesh/D013420Q000633
http://id.nlm.nih.gov/mesh/D000460Q000187
http://id.nlm.nih.gov/mesh/D002939Q000633
http://id.nlm.nih.gov/mesh/D006801
http://id.nlm.nih.gov/mesh/D014874Q000633
http://id.nlm.nih.gov/mesh/D015227Q000187
http://id.nlm.nih.gov/mesh/D002374Q000378
http://id.nlm.nih.gov/mesh/D058086Q000254
http://id.nlm.nih.gov/mesh/D000818
http://id.nlm.nih.gov/mesh/D004917Q000633
http://id.nlm.nih.gov/mesh/D017291Q000633
http://id.nlm.nih.gov/mesh/D058086Q000187
http://id.nlm.nih.gov/mesh/D013482Q000378
discussesAsDerivedByTextMining http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12560
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/EC_1.15.1.1
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID84029
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2764
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5329
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977

Total number of triples: 55.