http://rdf.ncbi.nlm.nih.gov/pubchem/reference/22316861

Outgoing Links

Predicate Object
contentType Journal Article
endingPage 2208
issn 1550-7033
issueIdentifier 12
pageRange 2208-2208
publicationName Journal of Biomedical Nanotechnology
startingPage 2208
bibliographicCitation Lee CW, Hu SC, Yen FL, Hsu LF, Lee IT, Lin ZC, Tsai MH, Huang CL, Liang CJ, Chiang YC. Magnolol Nanoparticles Exhibit Improved Water Solubility and Suppress TNF-α-Induced VCAM-1 Expression in Endothelial Cells (Journal of Biomedical Nanotechnology, Vol. 13(3), pp. 255-268 (2017)). J Biomed Nanotechnol. 2018 Dec 01;14(12):2208. doi: 10.1166/jbn.2018.2659. PMID: 30305227.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_e13e065fdede077c0ec50a57ff0af5fa
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_87eac8a5056ffdfaba7085ea495bd5c1
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_1d792fc490a490005c939496384be83e
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_6ceb90bb001ba0f52cafaf92dfc22db6
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_1e3cbd204cfe547dcb057f9a542deb0c
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_380af92e835288c7f2a089d420d4d7a8
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_8830c7461be6b82207f3985b4ec22e90
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_876c25d677caeef5d9b67dd136a4431a
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_39e8ef8a91d2a4bac620f7a1a788c11b
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_f854bc8026ca252d542d9dcfc33c3aa1
date 2018-12-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
identifier https://pubmed.ncbi.nlm.nih.gov/30305227
https://doi.org/10.1166/jbn.2018.2659
isPartOf http://rdf.ncbi.nlm.nih.gov/pubchem/journal/36247
https://portal.issn.org/resource/ISSN/1550-7033
language English
source https://pubmed.ncbi.nlm.nih.gov/
https://www.crossref.org/
title Magnolol Nanoparticles Exhibit Improved Water Solubility and Suppress TNF-α-Induced VCAM-1 Expression in Endothelial Cells (Journal of Biomedical Nanotechnology, Vol. 13(3), pp. 255–268 (2017))
discusses http://id.nlm.nih.gov/mesh/M0026769
http://id.nlm.nih.gov/mesh/M0047073
http://id.nlm.nih.gov/mesh/M0002570
http://id.nlm.nih.gov/mesh/M0028388
http://id.nlm.nih.gov/mesh/M0028145
http://id.nlm.nih.gov/mesh/M0022150
http://id.nlm.nih.gov/mesh/M0024955
hasPrimarySubjectTerm http://id.nlm.nih.gov/mesh/D053758
hasSubjectTerm http://id.nlm.nih.gov/mesh/D019010
http://id.nlm.nih.gov/mesh/D018799
http://id.nlm.nih.gov/mesh/D012995
http://id.nlm.nih.gov/mesh/D002478
http://id.nlm.nih.gov/mesh/D036103
http://id.nlm.nih.gov/mesh/D042783
http://id.nlm.nih.gov/mesh/D001713
http://id.nlm.nih.gov/mesh/D014409
http://id.nlm.nih.gov/mesh/D017705
http://id.nlm.nih.gov/mesh/D016328
discussesAsDerivedByTextMining http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/MD5_ab9bc7ce433266ca5b4543e538aeed73
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID72300

Total number of triples: 48.