http://rdf.ncbi.nlm.nih.gov/pubchem/reference/20251084

Outgoing Links

Predicate Object
contentType Journal Article
endingPage 157
issn 0166-445X
pageRange 151-157
publicationName Aquatic toxicology (Amsterdam, Netherlands)
startingPage 151
bibliographicCitation Esterhuizen-Londt M, von Schnehen M, Kühn S, Pflugmacher S. Oxidative stress responses in the animal model, Daphnia pulex exposed to a natural bloom extract versus artificial cyanotoxin mixtures. Aquat Toxicol. 2016 Oct;179():151–7. doi: 10.1016/j.aquatox.2016.09.003. PMID: 27614285.
creator http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0003-1052-2905
http://rdf.ncbi.nlm.nih.gov/pubchem/author/ORCID_0000-0002-2342-3941
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_e807dc148adc50d7affef0c903b6ee30
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_74bda8f032539058c1c026239b56d836
http://rdf.ncbi.nlm.nih.gov/pubchem/author/MD5_ea1f14139a1e042093d51b67828bde79
date 201610
identifier https://pubmed.ncbi.nlm.nih.gov/27614285
https://doi.org/10.1016/j.aquatox.2016.09.003
isPartOf https://portal.issn.org/resource/ISSN/0166-445X
http://rdf.ncbi.nlm.nih.gov/pubchem/journal/21488
language English
source https://www.crossref.org/
https://pubmed.ncbi.nlm.nih.gov/
title Oxidative stress responses in the animal model, Daphnia pulex exposed to a natural bloom extract versus artificial cyanotoxin mixtures
discusses http://id.nlm.nih.gov/mesh/M0490627
http://id.nlm.nih.gov/mesh/M0000713
http://id.nlm.nih.gov/mesh/M0021724
http://id.nlm.nih.gov/mesh/M0236880
http://id.nlm.nih.gov/mesh/M0010718
http://id.nlm.nih.gov/mesh/M0210613
http://id.nlm.nih.gov/mesh/M0022302
http://id.nlm.nih.gov/mesh/M000738337
http://id.nlm.nih.gov/mesh/M0002131
hasPrimarySubjectTerm http://id.nlm.nih.gov/mesh/D018384Q000187
http://id.nlm.nih.gov/mesh/D014118Q000633
http://id.nlm.nih.gov/mesh/D000458Q000378
hasSubjectTerm http://id.nlm.nih.gov/mesh/D003621Q000378
http://id.nlm.nih.gov/mesh/D014498Q000633
http://id.nlm.nih.gov/mesh/D000470
http://id.nlm.nih.gov/mesh/D001427Q000032
http://id.nlm.nih.gov/mesh/D014498Q000032
http://id.nlm.nih.gov/mesh/D053719
http://id.nlm.nih.gov/mesh/D015227Q000187
http://id.nlm.nih.gov/mesh/D001427Q000633
http://id.nlm.nih.gov/mesh/D014498Q000031
http://id.nlm.nih.gov/mesh/D052998Q000032
http://id.nlm.nih.gov/mesh/D000087522
http://id.nlm.nih.gov/mesh/D002851
http://id.nlm.nih.gov/mesh/D006861Q000378
http://id.nlm.nih.gov/mesh/D052998Q000633
http://id.nlm.nih.gov/mesh/D023421
http://id.nlm.nih.gov/mesh/D000818
http://id.nlm.nih.gov/mesh/D003621Q000187
http://id.nlm.nih.gov/mesh/D014118Q000032
discussesAsDerivedByTextMining http://rdf.ncbi.nlm.nih.gov/pubchem/disease/DZID11449
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6185
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID784

Total number of triples: 54.