http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2022101282-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_733f9f206a30eb241a0e7ece400747f1
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N9-0051
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12P33-06
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12R1-01
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12P33-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N9-02
filingDate 2021-11-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_34f6124214ba9f954a87c6df4cd2b64f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_526bc30a37b0acc8bcda6a0fea769a52
publicationDate 2022-05-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2022101282-A1
titleOfInvention Synthesis of 25-hydroxy-vitamin d3, 25-hydroxy-7-dehydrocholesterol and analogous alcohols using the beta-proteobacterium thauera aromatica
abstract The present invention relates to methods using recombinant Thauera aromatica cells to produce oxygen-independent molybdenum-hydroxylases in order to convert vitamin D3, 7-dehydrocholesterol and related alkylated compounds into 25-hydroxy-vitamin D3, 25- hydroxy-7-dehydrocholesterol and analogous alcohols. The underlying biocatalytic method links the water-dependent hydroxylation of alkyl residues with the nitrate- reducing respiratory chain of the strain as electron acceptor system. In contrast to commonly used methods, the present method does no longer require the artificial regeneration of the electron-carrier.
priorityDate 2020-11-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/PL-226816-B1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID53846434
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5280793
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5283711
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226413548
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395473
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID978
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12303103
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5280795
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID439423
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395383
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87058084
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226406008
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395384
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226406009
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5283731
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID91477
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395515
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5280453
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226546441
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395601
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID938
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226438682
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226509607
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226394128
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87070941
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226399493
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226399873
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID243
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395621
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID656894
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID171548
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID517055
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395747
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226394161
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226393750
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID66617097

Total number of triples: 52.