http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2021087453-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_2a819eda0adf22936a52362eeebb9fb4
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-33
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N33-948
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61M1-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61M1-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61M1-16
filingDate 2020-11-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_62db30226fc8aec7ff222b0da57ad532
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_96d5e20e0afe1ea623ed4f1e83f47187
publicationDate 2021-05-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2021087453-A1
titleOfInvention Systems and methods for the detection of phenolic cannabinoids
abstract Systems and methods for detecting phenolic cannabinoids are described. In many embodiments, the detection of phenolic cannabinoids can be achieved by oxidizing phenolic cannabinoids to corresponding quinones. The oxidation of Δ9- tetrahydrocannabinol (Δ9-THC) can be achieved chemically or electrochemically. The oxidized products of Δ9-THC can exhibit different photophysical and electrochemical properties compared to Δ9-THC. Many embodiments implement integrating Δ9-THC detection into a multimodal marijuana breathalyzer device.
priorityDate 2019-10-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2018200794-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010184082-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2018128843-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2019209095-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2018112458-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4650
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226602880
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458431511
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID996
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226396574
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426072895
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419505153
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419521973
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226408144
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226428366
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID442532517
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID21491175
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2543
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5321846
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410494295
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11421
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226492602
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID102317
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7611
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226486129
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474448
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226405880
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419522783
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450395493
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419533640
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID287359
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12041285
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549475
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226428852
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID785
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID156321810
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16078
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415923444

Total number of triples: 56.