http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2020208610-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_db8acd71f5994544bda6df3f27a3f51e
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G02B27-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G02B5-288
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G02B26-001
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G02B26-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G02B5-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G02B27-30
filingDate 2020-04-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8571ae4d31c3f67d40b4053fb68c653e
publicationDate 2020-10-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2020208610-A1
titleOfInvention Optical bandpass filter
abstract A tunable resonant tunneling gap for resonant tunneling across the tunneling gap. By adjusting the width of the tunneling gap and adjusting an angle of incidence of light onto the tunneling gap, a pass-band shape and center wavelength may be tuned. The tunneling gap may be an air gap between lenses coated with matching Bragg reflectors. The air gap may be adjusted for example using piezo actuators connecting between the lenses. The angle of incidence may be adjusted for example by rotating the lenses, and thus the tunneling gap, relative to an incident beam of light.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2023059553-A1
priorityDate 2019-04-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5121181-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419593443
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID518712

Total number of triples: 19.