http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2020207188-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d6a6f422b091ba12ea61d4adbf1b0e8e
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-72
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-85
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-89
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-64
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B6-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B3-001
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B6-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B3-0026
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B6-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B3-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B6-04
filingDate 2020-03-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fb8ef13f0237b5b870bb6e1ed9a98e49
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c021bbec2df14bd038853cbebf71d6f9
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_89cf520e7cc695e297c178eb9ac59122
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0f484529fc4dfe00bbbd79cb8ab3b97c
publicationDate 2020-10-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2020207188-A1
titleOfInvention Method for in-situ preparation of nano-magnesium hydride
abstract Disclosed is a method for in-situ preparation of nano-magnesium hydride. The method comprises placing magnesium chloride and lithium hydride in an organic solvent and stirring same under the protection of an inert atmosphere so as to obtain an organic turbid liquid of the mixture; subjecting the organic turbid liquid to an ultrasonic treatment, so as to promote a chemical reaction of the mixture to occur, and filtering same after the reaction is finished; and washing, centrifuging and drying a solid reaction product, and removing residual organics, so as to obtain the nano-magnesium hydride. In the method, the energy provided by a cavitation effect generated by an ultrasonic wave in a liquid medium promotes the chemical reaction between magnesium chloride and lithium hydride. Since the cavitation effect can instantaneously provide a large amount of energy in a very small range, the prepared product particles cannot easily grow compared to traditional energy supply through heating and mechanical force; at the same time, the agglomeration of nanoparticles is inhibited using the crush action of the ultrasonic waves, avoiding side effects caused by addition of various carrier materials for inhibiting the growth of the particles, thereby obtaining nano-scaled magnesium hydride with an improved effective hydrogen storage capacity.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115159459-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115159459-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114955989-A
priorityDate 2019-04-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CA-1294414-C
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-0090926-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2016144396-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549759
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559517
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416645804
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24385
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452351664
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559261
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419537701
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559479
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3032536
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8078
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24817
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID312
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5486771
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5486781
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5360315
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419548916
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8028
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419549332
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6432707
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62646
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID114942
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24818
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24193
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520844
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419484729
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452005884
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415712602
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID180
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452771623
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449460707
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452899714
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62714

Total number of triples: 74.