http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2020207009-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ac31afbea1cbbb03498644721ffb4a62
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-502
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L27-156
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-0095
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-502
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-007
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-40
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L27-15
filingDate 2019-11-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ed30439c9275d4340e076d147486bc62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_18029211c12e7ec3559130d2ddb96eea
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c9b0527abf739165fefb1e13d9ca7b26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2bf55dfdab04e8bf67001aef7f4321fb
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_56b9ae8e0b36c00e76c45e96339f91b7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_46ca5fd54fb1f95f176b2d19ad924107
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_480ccd77625f207bd2925fa693c190f2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d7cab283f66c19f89a7d86c54cc0d175
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7d51209ae4374274340d2b5b8451d0bd
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0e693bbf89f585cbc81db86b113801b1
publicationDate 2020-10-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2020207009-A1
titleOfInvention Micro panchromatic qled array device based on deep silicon etching template quantum dot transfer process, and preparation method therefor
abstract Disclosed is a micro panchromatic QLED array device based on a deep silicon etching template quantum dot transfer process. A blue-light LED epitaxial wafer is provided with an array-type square mesa structure penetrating through a p-type GaN layer (5) and a quantum well active layer (4) and reaching an n-type GaN layer (3) in depth; and micro holes are formed in the array-type square mesa structure by means of etching. Every 2*2 mesa structures constitute an RGB pixel unit, and in four micro holes, there are micro holes respectively filled with a red-light quantum dot, a green-light quantum dot and a yellow-light quantum dot and one micro hole emits blue light by itself/is filled with a blue-light quantum dot. Micro holes are etched through a silicon wafer by means of a deep silicon etching technique, the micro holes in the silicon wafer are aligned with quantum dot filling areas on a Micro-LED, and the quantum dots are placed into the Micro-LED through spin coating via the micro holes on the silicon wafer. Further disclosed is a preparation method therefor. Three different deep silicon etching masks can complete spin coating of green-light, red-light and yellow-light quantum dots in the Micro-LED, thereby achieving panchromatic display of RGB pixel units, and forming a QLED array device.
priorityDate 2019-04-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-208489225-U
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14784
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524278
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5461123
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559541

Total number of triples: 31.