http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2020163967-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_62e3ae23acdaa58f1c55cf380f244708
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-20084
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-20081
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-10061
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-30148
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01Q60-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-045
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82B3-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82B3-0019
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-048
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01Q30-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T7-0008
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01Q30-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N3-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N3-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82B3-00
filingDate 2020-02-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b35d3bfe318554c2c11dcea53be07bf9
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2518ab55b2d2dab0a9cc1ba4ee6c7040
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_338e44339734ab7526c05258250f3608
publicationDate 2020-08-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2020163967-A1
titleOfInvention Automated atomic scale fabrication
abstract A method for autonomously applying a dangling bond pattern to a substrate for atom scale device fabrication includes inputting the pattern, initiating a patterning process, scanning the substrate using a scanning probe microscope (SPM) to generate an SPM image of the substrate, feeding the SPM image into a trained convolution neural network (CNN), analyzing the SPM image using the CNN to identify substrate defects, determining a defect free substrate area for pattern application; and applying the pattern to the substrate in that area. An atom scale electronic component includes functional patches on a substrate and wires electrically connecting the functional patches. Training a CNN includes recording a Scanning Tunneling Microscope (STM) image of the substrate, extracting images of defects from the STM image, labeling pixel-wise the defect images, and feeding the extracted and labeled images of defects into a CNN to train the CNN for semantic segmentation.
priorityDate 2019-02-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2018015809-A2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CA-2323850-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-0218266-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559592

Total number of triples: 36.