http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2019241082-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_f79e0e1bc7b584c696e0810c1e235c3a
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-423
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S2301-17
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-861
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L27-15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-028
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-67098
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0607
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-641
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0612
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-642
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-67248
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-324
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L27-0814
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-18
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-67
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L27-15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-861
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-324
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L33-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L27-08
filingDate 2019-06-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b3d383541bc71f12deb3db908fe20e68
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2ee7d29ada983b904dadd039765c01b2
publicationDate 2019-12-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2019241082-A1
titleOfInvention Strain control in optoelectronic devices
abstract A coating having a mismatched coefficient of thermal expansion is applied to an underlying light emitting diode (LED) or laser diode (LD), such that as the temperature of the device changes, a varying level of strain is introduced to the underlying LED or LD. Because strain can also adjust the effective bandgap energy (and hence emission wavelength) of the device, the external strain-inducing coating can act to either compensate for the wavelength shift due to temperature (resulting in reduced d?/dT) or accentuate it (resulting in increased d?/dT). By proper selection of coating material and geometry, full control over d?/dT can be achieved.
priorityDate 2018-06-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5903585-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7875522-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010290217-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2002054616-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4332
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414857550

Total number of triples: 42.