http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2019201229-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ade7c98fb2e25128b7be6502b20b48f4
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01K7-028
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01K7-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01K17-20
filingDate 2019-04-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4b7919f5be9d3f961a882d9b7383bdfa
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_32c0ebdc9ba6bb59be2561a6ea1b4b82
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_661b136f75185730f97825b030cbccce
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_13d7a8a374ae52b647fba526dc9203d6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_850fa0e6f157a0958617a38d20001461
publicationDate 2019-10-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2019201229-A1
titleOfInvention 3d direct-writing aluminum oxide ceramic film heat-flow sensor and manufacturing method therefor
abstract The present invention relates to the technical field of film heat-flow sensors, and provides a 3D direct-writing aluminum oxide ceramic film heat-flow sensor and a manufacturing method therefor having high potential signal and sensitivity and short response time and capable of stably working in a high temperature environment to realize stable reading of a thermoelectric potential signal. The technical solution is as follows: a 3D direct-writing aluminum oxide ceramic film heat-flow sensor comprises an upper temperature gradient isolation layer, an upper thermocouple pile, a positive lead-out electrode, a connector, a micron-order ceramic substrate, a lower thermocouple pile, a negative lead-out electrode, and a lower temperature gradient isolation layer. The upper thermocouple pile generated by 3D printing is formed on the upper surface of the micron-order ceramic substrate. The upper thermocouple pile is coated with the upper temperature gradient isolation layer. The lower thermocouple pile generated by 3D printing is formed on the lower surface of the micron-order ceramic substrate. The lower thermocouple pile is coated with the lower temperature gradient isolation layer. The present invention can be applied to the field of temperature gradient measurement.
priorityDate 2018-04-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-203643055-U
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23985
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9989226
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452198021
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23939
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451818717
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID57420512
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23938
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID482532689
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458431511
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558592

Total number of triples: 27.