http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2019025298-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ca32fd2a44fd326ffd027a75a57bd13f
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N3-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T3-4069
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T3-4053
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T3-4076
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T3-40
filingDate 2018-07-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_44c6c01166d916826b510f4115453466
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e05f3b300e450cb0273ac35e07745f4a
publicationDate 2019-02-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2019025298-A1
titleOfInvention METHOD, DEVICE AND COMPUTER PROGRAM FOR IMPROVING THE RECONSTRUCTION OF VERY HIGH RESOLUTION DENSED IMAGES FROM LIMITED-LIFE DIFFRACTION IMAGES ACQUIRED BY MONOMOLECULAR LOCATION MICROSCOPY
abstract The invention relates to the reconstruction of a very high resolution dense synthetic image from at least one low information content image, for example from a limited diffraction image sequence, acquired by microscopy of monomolecular localization. After obtaining such a limited diffraction image sequence, a sparse localization image is reconstructed from the obtained limited diffraction image sequence according to a monomolecular localization microscopy image processing. The reconstructed sparse localization image and / or a corresponding low resolution wide field image are entered into an artificial neural network and a very high resolution dense synthetic image is obtained from the artificial neural network, the latter being formed at the same time. using training data comprising scattered location image triplets, at least partially corresponding low resolution wide field images, and corresponding very high resolution dense images as a function of an objective function of learning comparing dense images at very high resolution and corresponding outputs of the artificial neural network.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2022206469-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11164721-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2022064763-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-7346726-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2020198752-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110084745-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11557459-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110648293-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110751597-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110648293-A
priorityDate 2017-07-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID41183
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID37238
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4122
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419476366
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID40848
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID43359
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID37888
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID412857
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID35199
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID33501
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID729857
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID412857
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID40904
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID39130
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID400966
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID41124

Total number of triples: 41.