http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2017011387-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_2a819eda0adf22936a52362eeebb9fb4
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-34333
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0262
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E10-544
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-183
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-03044
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02458
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-3095
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-4043
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B29-68
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-0075
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-0254
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-0262
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02631
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B25-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B23-025
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L33-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B29-406
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-147
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02505
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L31-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L33-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-06
filingDate 2016-07-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_991098601b66b003fbfb28da6876bc69
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_356b494661663b72c709ebdbc48d9682
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f62010546cfc9fe0fae3a5c78a20bfe6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2b738dba8887a048a3ef1d5d45ec5d32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_72cf0e98394b863e25cbd7eebe79fa82
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e3664a271a43b2a7ba044915d0c64d64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_13976749ce39a385c88543ee6511fb6a
publicationDate 2017-01-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2017011387-A1
titleOfInvention Hybrid growth method for iii-nitride tunnel junction devices
abstract A hybrid growth method for III-nitride tunnel junction devices uses metal-organic chemical vapor deposition (MOCVD) to grow one or more light-emitting or light-absorbing structures and ammonia-assisted or plasma-assisted molecular beam epitaxy (MBE) to grow one or more tunnel junctions. Unlike p-type gallium nitride (p-GaN) grown by MOCVD, p-GaN grown by MBE is conductive as grown, which allows for its use in a tunnel junction. Moreover, the doping limits of MBE materials are higher than MOCVD materials. The tunnel junctions can be used to incorporate multiple active regions into a single device. In addition, n-type GaN (n-GaN) can be used as a current spreading layer on both sides of the device, eliminating the need for a transparent conductive oxide (TCO) layer or a silver (Au) mirror.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2018035322-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10985285-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11348908-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11081618-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10355165-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2023031058-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10559711-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10546972-B2
priorityDate 2015-07-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2011150020-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2001040905-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2004061923-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6515308-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2015179872-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013270514-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7323721-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4989050-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6526083-B1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419550829
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID222
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID117559
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23954
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559169
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557109

Total number of triples: 64.