http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2015056759-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ed4faa2bdfe4ddde15d2ec16b7ba4f8b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_7e71e94dd7afa6aab21e52b6d5a18b9f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ab67836265f3684200a24fd075172203
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-86
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-622
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02T10-70
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-13
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-366
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-0447
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-156
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-505
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-485
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-0568
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-0567
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-168
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-23
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-587
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-194
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-198
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B25-45
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-133
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G11-34
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B31-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-139
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-13
filingDate 2014-10-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8cce79d5f99de895cc7b900a46350051
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b317e3fa074d37b29ae2425cf69dde72
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9242800a4f0e7d82a2ac340a195e18ea
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_20ef528721cfdb962683b1267d279c91
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3173d437ffc7dbb6a5839e2293b81f92
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f06fcd4f599dca8d3b1d204aa691d732
publicationDate 2015-04-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2015056759-A1
titleOfInvention Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
abstract Provided is a conductive carbon having a high energy density and conducting electricity to an electric storage device. This conductive carbon is characterized in including a hydrophilic solid phase component, a crystallite size (La) not including a twist in the graphene surface direction and a crystallite size (Leq) including a twist in the graphene surface direction satisfying the expressions 1.3nm≤La≤1.5nm, 1.5nm≤Leq≤2.3nm, and 1.0≤Leq/La≤1.55, the crystallite size (La) and the crystallite size (Leq) being calculated from a Raman spectrum of the hydrophilic solid phase component. When performing a rolling treatment on an active layer including active particles formed on a current collector and this conductive carbon during manufacture of an electrode of an electric storage device, the pressure resulting from the rolling treatment causes this conductive carbon to spread in a paste form and increase in density while covering the surface of the active particles, the conductive carbon being pressed into gaps formed between adjacent active particles and filling the gaps. As a result, the amount of active material per unit volume in the electrode obtained after the rolling treatment increases, and the electrode density increases.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2022039211-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2017208742-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2015079680-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2015079678-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2015079681-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20230054363-A
priorityDate 2013-10-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2012155916-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2010212309-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14828
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419882349
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10197665
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12543515
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526858
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559058
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3026
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID71777668
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454600108
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID420315727
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24341
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419519498

Total number of triples: 70.