http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2013115893-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_5d89a1fdfad4ceb45818cee0bfda31a6
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-031
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0617
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-3401
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2021-7776
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-141
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2201-0612
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2021-399
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-06832
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-143
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-3402
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0028
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-39
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-06808
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0687
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-39
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-0687
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-068
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-77
filingDate 2012-11-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c2c6f09f896d2bec53ba55e87c252a22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_aac537cccf4924504b20ccaa5910c855
publicationDate 2013-08-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2013115893-A1
titleOfInvention Chemical detection and laser wavelength stabilization employing spectroscopic absorption via laser compliance voltage sensing
abstract Systems and methods are disclosed that provide a direct indication of the presence and concentration of an analyte within the external cavity of a laser device that employ the compliance voltage across the laser device. The systems can provide stabilization of the laser wavelength. The systems and methods can obviate the need for an external optical detector, an external gas cell, or other sensing region and reduce the complexity and size of the sensing configuration. The laser may comprise a QCL (120) in an external cavity (115) with a grating (140) for wavelength control by rotation with an actuator (145) and an intra-cavity sample (170). The bias voltage (150) supplied to the QCL (120) is sensed and processed by a controller (160).
priorityDate 2012-01-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226409812
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8343

Total number of triples: 36.