http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2011023312-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e0f55df4003fa32f21f63160db9045f8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_db7f746625801d6ac7aad99d27611382
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a2bcaf91101a370a3d64e3190366357f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e93021932cbb19e7cc09ba0699cc3ee8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9e2934b570d4e721001d13384b7a0182
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G03F7-2008
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-66
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E10-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2015-1479
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F17-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H02S50-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-6489
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-9501
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-66
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01R31-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-66
filingDate 2010-08-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9e317cc1fcca7ea294f03861bea29e41
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9dc02ed94a5a455ea54edf8dc00d0ef9
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1d87f3026f768e064a188a1614674f05
publicationDate 2011-03-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2011023312-A1
titleOfInvention Method for measuring a semiconductor structure, which is a solar cell or a precursor of a solar cell
abstract The invention relates to a method for measuring a semiconductor structure, which has an emitter and a base, and which is a solar cell or a precursor of a solar cell, comprising the following steps: A) Generating luminescence radiation in the semiconductor structure, and spatially resolved measuring of the luminescence radiation emitted by the semiconductor structure, wherein a first measurement is conducted under a first measurement condition a , and depending on the measurement data that are obtained at least from the first measurement, a first spatially resolved, voltage-calibrated image V a (x i ) for a plurality of local points x i of the solar cell is determined from the measurement data obtained in step A; B) Determining spatially resolved properties of the semiconductor structure with respect to the spatially resolved dark saturation current j n 0 n (x n i n ) , and/or the spatially resolved emitter layer resistance p(x n 1 n ) , and/or the spatially resolved, local series resistance R s (x i ) for the plurality of local points x i , depending on at least the first voltage image Va(x n 1 n ) determined in step A. The invention is characterized in that in step A, additionally at least one second measurement is carried out under a second measurement condition b which differs from the first measurement condition a , and depending at least on the measurement data that are obtained in the second measurement, a second spatially resolved, voltage-calibrated image V b (x i ) for the plurality of local points x i is determined from the measurement data obtained in step A. In step A, in both measurements, the luminescence radiation is substantially generated by applying an excitation radiation in a planar manner to the semiconductor structure. The measurement conditions (a, b) of the first and second measurements differ with respect to the intensities and/or spectral compositions of the excitation radiation and/or a predetermined external voltage V n ext , which is applied to the semiconductor structure by way of electrical contacting. In addition to each measurement condition (a, b), a voltage-independent, site-independent short-circuit current density (jP,a, jP,b) of the current flowing under the respective measurement conditions in the presence of short-circuit conditions is predetermined and/or measured. In step B, the determination of the spatially resolved, electrical properties at each local point xi is carried out depending on at least the short-circuit current densities (jP,a, jP,b) and a voltage-dependent, site-dependent dark current density (jD,a(xi), jD,b(xi)) for each measurement condition, wherein the dark current densities (jD,a(xi), jD,b(xi)) are at least dependent on the voltage-independent dark saturation current density (j0(xi) and the two voltages (Va(xi), Vb(xi)) resulting from the respective voltage images for site xi.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2012142651-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-104170246-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103477208-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103477208-A
priorityDate 2009-08-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2008095467-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26124
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9568614
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID156391
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395323
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID129288903
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226408122

Total number of triples: 40.