http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2010141914-A2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_b8beaf3244ef94e03bdd6d2ad2462d7c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_eca3ee23df2bf3a6893184f5c3ef60af
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J2201-028
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D33-70
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D39-083
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2239-025
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-228
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2239-0258
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D33-15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01F27-412
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D39-1638
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J19-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08F2-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D39-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D39-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-0066
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D33-23
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-0071
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D33-21
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08J9-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01F3-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J19-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08F2-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J19-12
filingDate 2010-06-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3acec3de92a505637e4ecb513c589946
publicationDate 2010-12-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2010141914-A2
titleOfInvention Reactors for forming foam materials from high internal phase emulsions, methods of forming foam materials and conductive nanostructures therein
abstract An RP inductor such as a Tesla antenna splices nanotube ends together to form a nanostructure in a polymer foam matrix. High Internal Phase Emulsion (HIPE) is gently sheared and stretched in a reactor comprising opposed coaxial counter-rotating impellers, which parallel-align polymer chains and also carbon nanotubes mixed with the oil phase. Stretching and forced convection prevent the auto-acceleration effect. Batch and continuous processes are disclosed. In the batch process, a fractal radial array of coherent vortices in the HIPE is preserved when the HIPE polymerizes, and helical nanostructures around these vortices are spliced by microhammering into longer helices. A disk radial filter produced by the batch process has improved radial flux from edge to center due to its area-preserving radial vascular network. In the continuous process, strips of H3PE are pulled from the periphery of the reactor continuously and post-treated by an RF inductor to produce cured conductive foam.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111939779-A
priorityDate 2009-06-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2004087926-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2002123283-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2002088938-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24756
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22280236
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID231457
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226405983
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID231457
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448664898

Total number of triples: 45.