http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2004095662-A2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9a3431261a7ed6986f498d8f47d910da
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_47ba1326cff1018e0c117495672528c6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_5626cdfbd0bd36f35effa7f06aa73cb5
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_f89906dd9db36dbc075bf8f05cbc3e2b
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-3414
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0264
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-4087
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0265
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G02F1-01708
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-182
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-34
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-026
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-40
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-323
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G02F1-017
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-343
filingDate 2004-04-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e0356808ceb8889380cb4757a516fb3c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_70ed0d9a1267ad6b8cf2a9fc67a08f94
publicationDate 2004-11-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber WO-2004095662-A2
titleOfInvention Bandgap engineering
abstract A method for achieving large localized bandgap energy differences at the wafer-level scale, with fine bandgap control, through a combination of regrowth and quantum well intermixing processes. The technique allows fabrication of a photonic integrated circuit on a wafer, wherein epitaxial layers of different composition are formed on separate regions to optimise the associated energy bandgap at a different centre wavelength. Quantum well intermixing of those parts of the structure containing quantum wells allows localised fine tuning of the bandgap, either to correct for inaccuracies during deposition or growth, or intentionally to detune the bandgap to achieve a certain functionality such as greater transparency or responsivity.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2018175587-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2020239526-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9372306-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103762158-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10012797-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10868407-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114371047-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-3745471-A1
priorityDate 2003-04-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5182128
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577416

Total number of triples: 39.