http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9446544-B2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_1864f1874286573936e315c760f7f8fa
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_dc62792656aa2e858252e97e5ffaca79
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_8268e39ce70ff2ad19742e2a21d5a90c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_075567b81c267718eafccf7cc4bbddf3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_5b1a1e572be216661dd458271d306e55
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C2945-76993
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C2945-76538
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C2945-76006
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C2945-7604
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C2945-76461
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B29C45-77
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N33-442
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B29C45-77
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-44
filingDate 2012-06-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2016-09-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d96f30d09741f4a8df664779fe835902
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ea982e9a73939fb50c86a7737fc9cf9e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_eaa6c27ca7c5edf29c82da6b828213c9
publicationDate 2016-09-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-9446544-B2
titleOfInvention Method and system for multivariate remote monitoring of polymer processing
abstract In an injection molding process, it can be difficult to detect, in real time, process control variables such as pressure and temperature. Traditional temperature detectors and pressure sensors can be difficult to place in or near a mold cavity. An example embodiment of the present invention includes a self-powered multivariate sensor and uses acoustic transmission. The sensor may employ an infra-red thermal detector and pressure sensor and transmit coded representations of measurements acoustically via a body of the mold. From the temperature and pressure, melt velocity and melt viscosity of a compound in the mold can be determined with a high degree of accuracy by a processor internal to or external from the sensor. The example embodiment maintains structural integrity of the mold, provides a wireless self-powered sensor, and makes available sensing of properties of the viscous compound to enable injection molded parts production at a success rate exceeding 90%.
priorityDate 2011-07-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9793818
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5463523
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449189281
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451649343

Total number of triples: 30.