http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8475616-B2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_eca3ee23df2bf3a6893184f5c3ef60af
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_b8beaf3244ef94e03bdd6d2ad2462d7c
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D33-70
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J2201-028
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-228
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2239-025
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D39-083
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2239-0258
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D39-1638
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D39-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08F2-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J19-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-0066
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-0071
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D39-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D33-23
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D33-21
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D33-15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01F27-412
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C08J9-28
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C08J9-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B65H69-02
filingDate 2010-06-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2013-07-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_28870156a73cf030afed867686336260
publicationDate 2013-07-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-8475616-B2
titleOfInvention Reactors for forming foam materials from high internal phase emulsions, methods of forming foam materials and conductive nanostructures therein
abstract An RF inductor such as a Tesla antenna splices nanotube ends together to form a nanostructure in a polymer foam matrix. High Internal Phase Emulsion (HIPE) is gently sheared and stretched in a reactor comprising opposed coaxial counter-rotating impellers, which parallel-align polymer chains and also carbon nanotubes mixed with the oil phase. Stretching and forced convection prevent the auto-acceleration effect. Batch and continuous processes are disclosed. In the batch process, a fractal radial array of coherent vortices in the HIPE is preserved when the HIPE polymerizes, and helical nanostructures around these vortices are spliced by microhammering into longer helices. A disk radial filter produced by the batch process has improved radial flux from edge to center due to its area-preserving radial vascular network. In the continuous process, strips of HIPE are pulled from the periphery of the reactor continuously and post-treated by an RF inductor to produce cured conductive foam.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11598593-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11346620-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2012193271-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11609053-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2022347603-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10830545-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9011646-B2
priorityDate 2009-06-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2002088938-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008191606-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2002123283-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6444716-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6525106-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7704480-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2004087926-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6204298-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2006092370-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2604665-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6890963-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010099782-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2009013500-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6331265-B1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID231457
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID231457
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448664898
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22280236
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226405983
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24756

Total number of triples: 60.