http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7482163-B1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_145c9f3f5384842c28427a58f8f0262b
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16C10-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J23-42
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-0013
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-006
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J21-04
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16C20-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F17-50
filingDate 2005-02-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2009-01-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0b3b45a04fe3cfe2d8664df7b748e2a7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7c93bde09a2136e4e1fb77cdd64c5505
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e3039e0262048ee955eabf94a330e0b7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_550cb08d2ba68e5b5aa563333e3586b5
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0226b471c29d55ab83e664c2ff9a8e6d
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_121cea4be785c686bdc9054b45f58d31
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8f4a43c665e49681ed68d8126fc7f79c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6789b66272a23a260f7ebb51639ceb2f
publicationDate 2009-01-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-7482163-B1
titleOfInvention Method of estimating chemical reactivity of nanoparticles
abstract The catalytic efficiency of supported catalysts containing metal nanoparticles is strongly related to the chemical softness at the surfaces of such nanoparticles. The chemical softness of a nanoparticle is obtained using results from Density Functional Theory modeling, an extended version of Embedded Atom Method modeling, and continuum modeling based on size and shape of the nanoparticle. A metal nanoparticle of a certain size and shape is first modeled using the extended EAM and EAM parameters that have been validated with results from DFT modeling, to obtain atomic energy densities at each atom location. The chemical softness value at each atom location is then calculated from the atomic energy densities and various parameters that are derived based on results from DFT modeling. The surface chemical softness value is derived from the local chemical softness values based on the geometry and atomistic structure of the metal nanoparticle.
priorityDate 2004-11-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6106562-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID123441
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9905479
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448568758
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID127604101
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10038
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23939
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458431511
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512439

Total number of triples: 35.