http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5300216-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_916075766043ce900399a4c2eee9f054
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S261-78
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S585-922
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C07C5-327
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G10K15-043
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G10K15-04
filingDate 1993-03-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 1994-04-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a89b43033fd6d5cccb10e325ddb07741
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9f2e0d5ec6635f16e5a9074db1aa013a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_51f661a47b0bb52edc212deb4fea28d1
publicationDate 1994-04-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-5300216-A
titleOfInvention Method for initiating pyrolysis using a shock wave
abstract Apparatus and method for initiating pyrolysis of a feedstock by establishing a continuous, standing shock wave. Several embodiments of a shock wave reactor (10, 100, 150) are disclosed; each is connected to receive an ethane feedstock and a carrier fluid comprising superheated steam. The feedstock and the carrier fluid are pressurized so that they expand into parallel supersonic streams that mix due to turbulence within a mixing section (36) of a longitudinally extending channel (12) of the shock wave reactor. The carrier fluid heats the ethane feedstock as it mixes with it, producing a mixture that flows at supersonic velocity longitudinally down the channel. A gate valve (44) disposed downstream of the channel provides a controlled back pressure that affects the position of the shock wave and the residence time for the reaction. The shock wave rapidly heats the mixture above a pyrolysis temperature, producing a desired product by cracking the feedstock. Rapid heating of the mixture enables a residence time in the pyrolysis section of only 5 to 50 milliseconds. By varying the position of the shock wave, the residence time is controlled as required to obtain maximum yield from different feedstocks. Downstream of the pyrolysis section, the mixture is quenched, cooling and terminating the pyrolysis reaction. The relatively short residence time and the control of its duration with a resolution in the microsecond range are substantial advantages of the shock wave reactor.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6869586-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/BG-65376-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9689615-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013216689-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5969207-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11773777-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-104583160-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10736349-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014058128-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6365555-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005072152-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/DE-19982976-C2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5938975-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9023255-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5937906-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6271431-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-9830518-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2014210297-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9308513-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10279329-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9434663-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6734331-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5971601-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/AU-732503-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2010110691-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9205398-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11220428-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2014031524-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2014031516-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9370757-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2014031479-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-100390113-C
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11649762-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2014031462-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005047993-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6035897-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2014031228-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11701632-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6003789-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014058142-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10631566-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9707530-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9327265-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8927769-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2022008052-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2004043268-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8937186-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-1897929-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9494038-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8933275-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5931771-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9656229-B2
priorityDate 1991-02-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4136015-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4724272-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8785
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226428088

Total number of triples: 73.