http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2022378506-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_604e07c32377cab416660b10fd8f494c
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-30048
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B2034-105
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B2034-104
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-30104
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B2017-00203
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2200-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2219-2004
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B6-5211
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T7-0012
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B6-504
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16H50-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16H50-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16H40-63
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B6-032
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T19-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16H30-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16H20-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T17-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B6-5217
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B34-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T7-11
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T17-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T19-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B34-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T7-11
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06T7-00
filingDate 2022-05-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5479bb234be24d9d3cf2a27e134830fd
publicationDate 2022-12-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2022378506-A1
titleOfInvention Patient-specific computational simulation of coronary artery bypass grafting
abstract In accordance with embodiments of this disclosure, a computational simulation platform for assessing impact of coronary artery bypass grafting comprises a computer-implemented method that includes: generating patient-specific three-dimensional (3D) reconstructions of path lines for a patient's heart, ascending aorta, aortic arch, descending thoracic aorta, great vessels, coronary arteries and their major branches based on noninvasive imaging; performing virtual CABG by modifying the patient-specific 3D reconstructions to computationally add path lines for one or more bypass grafts; performing post-virtual CABG computational fluid dynamic (CFD) studies under computational resting and stress conditions; and assessing hemodynamic impact of virtual CABG on the resting and hyperemic flow of diseased native coronary arteries and virtual bypass grafts.
priorityDate 2021-05-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226406750
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226405960
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4763
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID441244

Total number of triples: 39.