http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2022209107-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_8381805eba6d034fc77bd230dd02e6e2
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G11C2213-52
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N70-253
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L45-085
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N70-023
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N70-823
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N70-245
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N70-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L45-1616
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L45-145
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N70-883
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G11C13-0007
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L45-1206
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L45-00
filingDate 2021-04-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_13bae4ea74d53a67d3c3f6bd2179f162
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_75e262f620203199c381028cbb6df18a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b2161fd495e05b9efd5a5c1af711b82d
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_20bfe3d54a72cd9ff86fcab22c93d957
publicationDate 2022-06-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2022209107-A1
titleOfInvention Cmos-compatible protonic resistive devices
abstract Described are CMOS-compatible protonic resistive devices (e.g., processing elements and/or memory elements). In embodiments, a protonic resistive memory can be formed from a proton-sensitive metal oxide channel where the concentration of protons intercalated inside the layer is controlled to modulate its conductivity. The protons can initially be supplied to the material stack by an implantation method. Irradiation techniques can be implemented to increase the concentration and conductivity of protons inside the materials. Some designs can put the active layer and reservoir in direct contact, creating an electrolyte-free device. Designs provide scalable solutions for full-scale Si-integration.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2022271221-A1
priorityDate 2020-04-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546197
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24603
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559021
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5123419
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23932
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452908191
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14811
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416641266
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458392451
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707774
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID82849
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16213870
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577475
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458427391
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID123105
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23938
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419576496
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID160064054
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578887
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419405613
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23995
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14802
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23990
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458431511
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID159433
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23956
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578685
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID518712
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419530175
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454455631
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419593443
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419519656
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14814
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451550227
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558592
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546429
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23936
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID162651

Total number of triples: 71.