http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2021239779-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_c815c3eb24b63b115764c76ad1aa0e0f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_013f89295137e4f06d6c33b98c6c77ba
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_8e071d18fea054bf8d1420d483e78ed1
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01R33-0017
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01R33-032
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01R33-323
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01R33-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01R33-5608
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N24-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01R33-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01R33-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01R33-389
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01R33-56
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01R33-389
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01R33-00
filingDate 2021-01-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_71b37860f32d15dd0a8b79ca433de6dd
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b30c98a1845cae93c1bea65396b7d84f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_942fe594de5e8ba3d8de2830b8ffeee8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a6c1c476c27994beec921677f1e23a29
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_adbb680a5310ae799b119cced8b0fd84
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e24e7fc754f283733610b91eb0620a28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_70c0b3f892a517c83e4d329dcf26e52a
publicationDate 2021-08-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2021239779-A1
titleOfInvention High-resolution magnetic field fingerprinting of integrated circuit activity with a quantum diamond microscope
abstract Devices for determining a state of a magnetic field-generating article are provided. In various embodiments, a device comprises: a single crystal diamond having a plurality of NV centers, the single crystal diamond configured to be disposed adjacent to a magnetic field-generating article, and configured to generate a fluorescent signal in response to being illuminated by a light source; a coherent light source configured to generate a light beam directed at the single crystal diamond; a microwave (MW) radiation source configured to irradiate the single crystal diamond with a MW signal; a magnetic field source configured to apply a bias magnetic field to the single crystal diamond; a photosensor configured to collect the fluorescent signal generated by the single crystal diamond; and a computing node operatively coupled to each of the coherent light source, the MW radiation source, the magnetic field source, and the photosensor.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2023155805-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115791740-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114167221-A
priorityDate 2020-01-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2016356863-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2011062957-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559583
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559565
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449360014
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2662
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10219356
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24681
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559575
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419506282
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID107639

Total number of triples: 43.