http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2021008215-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_dea036d1b8d39c3e2259ef477ab4657c
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y5-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61P1-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61K9-127
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61K9-1075
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61K47-24
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61K47-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61K9-107
filingDate 2019-07-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2ea6b2b2d59993a26064b0d846f5f74d
publicationDate 2021-01-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2021008215-A1
titleOfInvention Optimizing drug delivery
abstract This invention teaches a method of increasing the bioavailability, safety and efficacy of a cancer drug incorporated in a nanocarrier such as liposomes, micelles, dendrimeres, nanoemulsion, nanoparticles and antibody drug conjugates. It does so by administering pre-blocking blank liposomes to the patient several hours before the drug incorporated nanocarrier is administered. Blocking the reticuloendothelial system (RES) will prevent it from taking up the drug incorporated nanocarrier and hence improve the safety and efficacy of the drug.
priorityDate 2019-07-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226399858
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226396057
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87081044
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID12266
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226416521
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87081045
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP01025
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCF7CXW4
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87059597
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP23667
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87060846
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226429239
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226582159
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP98093
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226417267
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87059454
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226582160
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226417420
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP12387
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID36314
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ00685
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226429240
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ90633
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP98094
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87059570
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID280677
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A6I8SJY5
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395359
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID57847664
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226417566
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID24232
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14985
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7427
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ01833
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226417567
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID718
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226417266
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87059619
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP01024
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226416522
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226417419

Total number of triples: 57.