http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2020085730-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9b17f3e15825818620a0645a48e4e3b7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a6bfa9220cf016fbcb3c56fce6203e1a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_f278ab8fb471c7f78279bde9b4eda8a1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_19de38bc3aa944c23248db47b4c04844
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-0042
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-4839
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-055
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y5-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61K41-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61K9-0009
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-055
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-0515
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61N2-004
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61K9-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61N2-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B5-055
filingDate 2019-05-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c36c979efe09447f62d45ab18be64ac2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8c33120e3de891f0c870b59d410eb1a8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_bb951ddd8e043ee4b5957837313bd459
publicationDate 2020-03-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2020085730-A1
titleOfInvention 3d navigation of nanoparticles via induction of metastable diamagnetic response
abstract Methods and devices for three-dimensional navigation of magnetic nanoparticles are provided. A method can comprise introducing high-anisotropy magnetic nanoparticles to a mammal and directing the high-anisotropy magnetic nanoparticles towards a target region of the mammal. Direction control is achieved by subjecting the high-anisotropy magnetic nanoparticles to an alternating signal comprising a uniform magnetic field pulse having a strength greater than a coercivity of the high-anisotropy magnetic nanoparticles and a magnetic gradient pulse having a highest strength that is less than the coercivity of the high-anisotropy magnetic nanoparticles and a location of a lowest strength at the target region of the mammal, and the direction of the uniform magnetic field pulse being in an opposite direction of the magnetic gradient pulse.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11612655-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10813997-B2
priorityDate 2018-09-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925

Total number of triples: 30.