http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2020000971-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_1faac18f8237eeb75b8f335cefa6139f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_fffda8b59ac378c0e7cd94cdf51bbfd7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_2a819eda0adf22936a52362eeebb9fb4
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-54
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L2430-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L2300-252
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L2300-412
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-54
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-56
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-58
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61L27-56
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61L27-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61L27-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61L27-58
filingDate 2019-08-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_93a394276cdfaab1bd3a020e8ea43882
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ce2178fa497f1742cfcd226ba4c42d8e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4a2eb1a877656a3252e8cf9f5b0b8197
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_602f279447e8b5b02ff070a7f02e0d80
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_185f10702aafe40aac723c870e138460
publicationDate 2020-01-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2020000971-A1
titleOfInvention Nerve repair scaffolds having high microchannel volume and methods for making the same
abstract Tissue scaffolds for neural tissue growth have a plurality of microchannels disposed within a sheath. Each microchannel comprises a porous wall having a thickness of ≤about 100 μm that is formed from a biocompatible and biodegradable material comprising a polyester polymer. The polyester polymer may be polycaprolactone, poly(lactic-co-glycolic acid) polymer, and combinations thereof. The tissue scaffolds have high open volume % enabling superior (linear and high fidelity) neural tissue growth, while minimizing inflammation near the site of implantation in vivo. In other aspects, methods of making such tissue scaffolds are provided. Such a method may include mixing a reduced particle size porogen with a polymeric precursor solution. The material is cast onto a template and then can be processed, including assembly in a sheath and removal of the porogen, to form a tissue scaffold having a plurality of porous microchannels.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11129701-B1
priorityDate 2015-10-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO01945
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID10116
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID173839
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID3565880
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID33727
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID4363005
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID10116
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID3565413

Total number of triples: 39.