http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2019048481-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_087bed7abab91ae0f927879f9fe8b273
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02W10-37
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B2202-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B2202-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-13
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-52
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-54
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B11-043
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B11-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B11-069
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G23-047
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-174
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B11-0426
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25B11-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25B11-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B32-174
filingDate 2018-08-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2d32b50589c6156c8db031dc1a02ab52
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0c5a2691b646d79d104e373c42d98a34
publicationDate 2019-02-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2019048481-A1
titleOfInvention Electrolysis electrode featuring metal-doped nanotube array and methods of manufacture and using same
abstract An electrolysis electrode includes a metal-doped array of nanotubes formed on a substrate. The nanotube array (NTA) may be a stabilized metal-doped black TiO 2 NTA formed on a titanium substrate, and the metal dopant may include any suitable metal, for example, cobalt. The metal dopant improves the reactivity of the electrode and enhances its service life. The metal-doped NTA electrode may provide improved chlorine evolution and/or oxygen evolution activity for electrochemical wastewater treatment. The electrode may also be useful for water splitting applications. Increasing the loading of the metal dopant may lead to the formation of a metal oxide layer on top of the NTA, which improves oxygen evolution reaction (OER) overpotential.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113322473-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-102250649-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111250102-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-109867333-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114808019-A
priorityDate 2017-08-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451282663
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526621
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559470
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450868169
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577471
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450502002
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25000
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419576496
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16211566
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453001630
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458357694
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID104730
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453265332
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID104770
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452862991
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61511
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25516
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458391437
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526858
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9859353
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23968
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24341
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412550040
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23974
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25251
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450181837
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5352426
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559516
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23990
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID82848
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID935
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707642
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559170
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524915
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419544909
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID76939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23930
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25736

Total number of triples: 83.