http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2017077050-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_51d028c578ae85cb937b5b34a5129fbc
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G03F7-2059
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G4-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2223-6672
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G4-012
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L23-5227
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01F27-2804
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01F41-042
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01F17-0006
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L23-66
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L28-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G03F7-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G4-012
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01G4-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L28-60
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L23-5222
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L49-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L23-66
filingDate 2014-06-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5fdff7ad382ae183a8fc59ed0ffbec10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5a48272dd776972a83301d709e031474
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4be4bb2c9efd4c85d5b9b8330dafe17f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_713e35076d9d3201c7c4fbb06b40e8b9
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_89e37648b15a665bba894f738cdcc4d7
publicationDate 2017-03-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2017077050-A1
titleOfInvention Techniques for forming integrated passive devices
abstract Techniques are disclosed for forming integrated passive devices, such as inductors and capacitors, using next-generation lithography (NGL) processes, such as electron-beam direct write (EBDW) and extreme ultraviolet lithography (EUVL). The techniques can be used to form various different integrated passive devices, such as inductors (e.g., spiral inductors) and capacitors (e.g., metal finger capacitors), having higher density, precision, and quality factor (Q) values than if such devices were formed using 193 nm photolithography. The high Q and dense passive devices formed can be used in radio frequency (RF) and analog circuits to boost the performance of such circuits. The increased precision may be realized based on an improvement in, for example, line edge roughness (LER), achievable resolution/critical dimensions, sharpness of corners, and/or density of the formed structures.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2021352807-A1
priorityDate 2014-06-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8416028-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6448873-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9176377-B2
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415712566
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID68355
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID76173
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414250710

Total number of triples: 38.