http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014012258-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_278d933a3f1b2e284692bc98f81bceb7
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B2018-00083
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B2018-00613
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61M25-0108
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B2018-00434
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61N1-36007
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B2018-00285
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61N1-37205
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61N1-36121
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B18-1492
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61M25-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B17-12136
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61N1-327
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61N1-36182
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61N1-40
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B18-14
filingDate 2013-07-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_96fbd11b5fd740e8d46d020d1ebc3fba
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_86e797b612d61975298b62efb2dd7dc7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e270811f2403dc0644f173b5c68339f5
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dc53e8fabc7f5226240a80172f4bd39b
publicationDate 2014-01-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2014012258-A1
titleOfInvention Methods and apparatus for intravascularly-induced neuromodulation
abstract Methods and apparatus are provided for intravascularly-induced neuromodulation using a pulsed electric field, e.g., to effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, changes in cytokine upregulation, etc., in target neural fibers. In some embodiments, the intravascular PEF system comprises a catheter having a pair of bipolar electrodes for delivering the PEF, with a first electrode positioned on a first side of an impedance-altering element and a second electrode positioned on an opposing side of the impedance-altering element. A length of the electrodes, as well as a separation distance between the first and second electrodes, may be specified such that, with the impedance-altering element deployed in a manner that locally increases impedance within a patient's vessel, e.g., with the impedance-altering element deployed into contact with the vessel wall at a treatment site within the patient's vasculature, a magnitude of applied voltage delivered across the bipolar electrodes necessary to achieve desired neuromodulation is reduced relative to an intravascular PEF system having similarly spaced electrodes but no (or an undeployed) impedance-altering element. In a preferred embodiment, the impedance-altering element comprises an inflatable balloon configured to locally increase impedance within a patient's vasculature. The methods and apparatus of the present invention may be used to modulate a neural fiber that contributes to renal function.
priorityDate 2002-04-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID216858
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCF6W228
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID951
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID469651
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID280909
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100399036
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ6DLW5
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID5972
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID147040
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419544741
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID439260
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID44122
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ6DLS0
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID407182981
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9TSZ1
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5814
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID403838
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A6I8ST60
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP60016
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ6DYE7
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID574299
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID24715
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID450104
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID102122446
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID129228531
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP52115
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID19701
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID19702
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP00797
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID405786

Total number of triples: 57.