http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005203390-A1

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-7239
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01S7-52036
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01S7-52057
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-352
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B8-543
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01S7-52085
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01S7-52038
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01S7-52095
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01S7-52042
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B8-13
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01S15-8979
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01S15-584
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B8-485
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B8-488
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B5-352
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01S7-52
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01S15-58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01S15-89
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B8-13
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B8-08
filingDate 2003-11-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_24d5e883d5fa45e2af1538d24fdc6edd
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_62402e7e59c2f4e4cacb787da249dd23
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_55f563c9d85c1cdca88627c29aa010db
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fc6a26f95e636d91717f935cef49f7d8
publicationDate 2005-09-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-2005203390-A1
titleOfInvention Method and apparatus for providing real-time calculation and display of tissue deformation in ultrasound imaging
abstract An ultrasound system and method for calculation and display of tissue deformation parameters are disclosed. An ultrasound acquisition technique that allows a high frame rate in tissue velocity imaging or strain rate imaging is employed. With this acquisition technique the same ultrasound pulses are used for the tissue image and the Doppler based image. A sliding window technique is used for processing. The tissue deformation parameter strain is also determined by an accumulation of strain rate estimates for consecutive frames over an interval. The interval may be a triggered interval generated by, for example, an R-wave in an ECG trace. The strain calculation may be improved by moving the sample volume from which the strain rate is accumulated from frame-to-frame according to the relative displacement of the tissue within the original sample volume. The relative displacement of the tissue is determined by the instantaneous tissue velocity of the sample volume. An estimation of strain rate based upon a spatial derivative of tissue velocity is improved by adaptively varying the spatial offset, dr. The spatial offset, dr, can be maximized to cover the entire tissue segment (e.g., heart wall width) while still keeping both of the sample volumes at each end of the offset within the tissue segment. This may be accomplished by determining whether various parameters (e.g., grayscale value, absolute power estimate, magnitude of the autocorrelation function with unity temporal lag and/or magnitude of strain correlation) of the sample volumes within in the spatial offset are above a given threshold. Strain rate may be estimated using a generalized strain rate estimator that is based on a weighted sum of two-sample strain rate estimators with different spatial offsets. The weights are proportional to the magnitude of the strain rate correlation estimate for each spatial offset, and thus reduce the effect of noisy, i.e. poorly correlated, samples. An improved signal correlation estimator that uses a spatial lag in addition to the usual temporal lag is disclosed. The spatial lag is found from the tissue velocity. The improved signal correlation estimator can be utilized both in the estimation of strain rate and tissue velocity. Tissue velocity may be estimated in a manner that reduces aliasing while maintaining spatial resolution. Three copies of a received ultrasound signal are bandpass filtered at three center frequencies. The middle of the three center frequencies is centered at the second harmonic of the ultrasound signal. A reference tissue velocity is estimated from the two signals filtered at the outside center frequencies. The reference tissue velocity is used to choose a tissue velocity from a number of tissue velocities estimated from the signal centered at the second harmonic. A method to estimate the strain rate in any direction, not necessarily along the ultrasound beam, based on tissue velocity data from a small region of interest around a sample volume is disclosed. Quantitative tissue deformation parameters, such as tissue velocity, tissue velocity integrals, strain rate and/or strain, may be presented as functions of time and/or spatial position for applications such as stress echo. For example, strain rate or strain values for three different stress levels may be plotted together with respect to time over a cardiac cycle. Parameters which are derived from strain rate or strain velocity, such as peak systolic wall thickening percentage, may be plotted with respect to various stress levels,
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2011213260-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9111016-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010106011-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005124898-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8057394-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008312536-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007232949-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007258631-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8428691-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005131474-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-102481139-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7654958-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8622915-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8317711-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010234729-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11217000-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-101066211-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8081806-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8070684-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8052607-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9092833-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008146928-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007299479-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008146942-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005228290-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007167793-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7713210-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007167794-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/RU-2508055-C2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005080336-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9089278-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2012246013-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010305438-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2009005679-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2011098562-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2006122505-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-2203120-A4
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8187190-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2008146943-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9697634-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2009105580-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007167809-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2015286454-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9360552-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-2203120-A2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007083118-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9436425-B2
priorityDate 1999-08-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6352507-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5673700-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5785654-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6676599-B2
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID9606
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1003909
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5917
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1003909
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID9606
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID127688846
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID467674104

Total number of triples: 89.