http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10916674-B2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a619d2168f1ba50825fbb7e15ae49151
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E10-52
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-0033
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J37-348
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J37-06
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-0549
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-004
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B1-003
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B1-55
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B11-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H02S40-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J21-063
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J37-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J37-06
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J21-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25B1-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L31-054
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J35-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H02S40-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25B11-03
filingDate 2015-04-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2021-02-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e9a83a04eca39ba8ca27f34f1ba953d2
publicationDate 2021-02-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-10916674-B2
titleOfInvention Bandgap-shifted semiconductor surface and method for making same, and apparatus for using same
abstract Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.2 and greater, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
priorityDate 2002-05-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7485799-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2003228727-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5779866-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4511450-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4061555-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4021323-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5592028-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6471834-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4124464-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4722776-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451829787
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426334837
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID82899
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID187779
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26042
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526621
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451572542
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453284447
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451624195
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23696331
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61889
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5360311
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24526
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID162651
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID46874763
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707770
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452802464
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556973
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23665760
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID123111
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520436
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458427391
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448837113
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291

Total number of triples: 71.