http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10837153-B2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_76ba102ea9c02b6633d64bf09c5b89a4
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C04B2111-00146
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C04B2111-00732
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02W30-40
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/E02D3-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C04B28-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C05B17-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C05F3-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/E02D27-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C05F17-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C04B28-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C05G3-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K17-48
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C04B111-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/E02D3-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C09K17-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/E02D27-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C04B28-28
filingDate 2017-11-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-11-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_790ae161774df95d37ea0c9e44dc906e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_27f05033f9903d38b1b08c100cd78c21
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fb3ce4b1c898f7d8ee85de99951a8c95
publicationDate 2020-11-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-10837153-B2
titleOfInvention Bioinspired mineralization for geotechnical substructures
abstract Various examples are provided for in situ growth of subsurface structures using bioinspired mineralization. In one example, among others, a method for growth of a subsurface structure includes introducing a first aqueous mineral salt reactant and a second aqueous mineral salt reactant comprising a polymeric additive into a soil substrate. The first and second aqueous mineral salt reactants can combine to form a polymer-induced liquid-precursor (PILP) phase that initiates in situ mineralization in the soil substrate. Solidifying the mineralization can form a subsurface structure in the soil substrate. Multiple applications of aqueous mineral salt reactants can be introduced to adjust the thickness of the mineralization or for layers of coatings.
priorityDate 2016-11-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2015096464-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010172700-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2010196104-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7455854-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-S59122579-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014041553-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-2770034-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014363240-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-2497809-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014169879-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2006204581-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013324443-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5663123-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-2598603-A2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-7544496-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-6536995-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4106296-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-5824725-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2017183836-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9499719-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2012319042-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448098817
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226394420
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6274
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID773
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10112
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453467280
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID232
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395485
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474364
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453213080
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10340
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226395486
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5284359

Total number of triples: 66.