http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10755821-B2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ac60c2f711d3f7a5147d7ed05108d89d
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B32B5-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E30-128
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E30-10
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B62K17-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B32B15-043
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G21B1-13
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B62K15-006
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B32B15-016
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B32B5-04
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G21B1-13
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B32B15-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B62K17-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B32B3-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G21C1-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B32B15-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B62K15-00
filingDate 2015-12-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-08-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_63287c6f740de88985c0f848d4c28e6b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_bac28bdc3f506116e666826114e51406
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4c9e3336817d703b80c97cd1d68353b8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_70b1c392a66bea56fe5a17d6839d3ad0
publicationDate 2020-08-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-10755821-B2
titleOfInvention Composite for heat transfer with high-temperature resistance
abstract Composite for the transfer of the heat between the hot and cooled surface, whereby the composite is resistant to high temperatures, includes at least two components, one of the components is produced by longitudinal segments (1) with the melting temperature that is higher than 1300° C. and which are separated from each other by the filling (2) with the higher heat conductivity and thermal expansivity, which is in the direct contact with the cooling medium in the channel (3). Both components are in the direct contact with the hot environment surrounding the composite, whereby the overall surface formed by the segments (1) is 50 to 95% of the overall hot surface of the composite. The longitudinal axis of the segment (1) is primarily oriented in the direction of the shortest line connecting the hot surface with the cooled surface of the composite with the allowed deviation of 45° at maximum, whereby in the direction from the hot to the cooled surface it can cross one boundary between the components at maximum. The material for the segments can be tungsten, preferably tungsten with the admixtures of oxides La2O3 and/or Y2O3 and/or CeO2 and/or ThO2 and/or ZrO2. The matrix, that is, the filling (2) can be copper or silver or their alloys.
priorityDate 2015-12-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2011049749-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20120068116-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23978
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557109
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23964
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23954
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425762086
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID418354341

Total number of triples: 37.