http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10718064-B2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_df809f80345d5a8e7cafd6fd1188a474
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2325-02
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B81B3-0018
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-44791
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25F3-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25F7-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N33-48721
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-3278
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B81B3-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25F3-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25F7-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-487
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B81B3-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-447
filingDate 2015-12-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-07-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_552b42786b706578c8a780086f6384d2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dec52b5f62fef7bfb1fee66f81b1fb5f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6befe2b3ff122dee20a4dc5d10e900f6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2169cb04209954ea1876fa9a6a1b35fa
publicationDate 2020-07-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber US-10718064-B2
titleOfInvention Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown
abstract Nanopore arrays are fabricated by controlled breakdown in solid-state membranes integrated within polydimethyl-siloxane (PDMS) microfluidic devices. This technique enables the scalable production of independently addressable nanopores. By confining the electric field within the microfluidic architecture, nanopore fabrication is precisely localized and electrical noise is significantly reduced during sensing.
priorityDate 2014-12-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005102721-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2015299784-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-1526109-A2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2014105246-A2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014179909-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2004510980-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2002127144-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013333721-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2014144818-A2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013092541-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-0208748-A2
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10290728
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426453095

Total number of triples: 41.