http://rdf.ncbi.nlm.nih.gov/pubchem/patent/TW-554503-B

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_5a4101a36cf3774ba975ca559b0bfe8c
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2224-056
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2224-13099
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2224-05573
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2224-13
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2224-05572
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-01033
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-014
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-01075
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-01004
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-01074
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-19043
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-01005
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-01006
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-01078
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2224-11822
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2224-11
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L24-05
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-3025
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L24-11
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L24-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L24-13
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L23-485
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-60
filingDate 2002-10-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2003-09-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8d4a9d2c7acf8c9a3a147d4ff26402c9
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b64992b446bc716468f45b2f5a456331
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8e391e60f6c2c4ecfce427edc3ed87e1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_77bb6fc9f6140e58b7a535dee534d6d0
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0bc2974623139bf2aed05f82f2f63d93
publicationDate 2003-09-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber TW-554503-B
titleOfInvention Fabrication method of solder bump pattern in back-end wafer level package
abstract The present invention provides a fabrication method of solder bump pattern in back-end wafer level package by using traditional front-end processes in accordance with proper vacuum heating system, so as to solve the problem of bubble-generation in fabricating solder bump. The processes of the present invention is mainly to form the etched pattern of passivation layer on which the solder bump is to be disposed in the wafer, then deposit a global under bump metallurgy layer before using photoresist with proper thickness to generate an opening, dispose the wafer in a vacuum system and heating system, the flux or solder paste is in the melted state at this time, so that the flux or solder paste is kept in liquid state and can flow, and will not generate bubbles. Form solder ingot pattern at the position of photoresist opening on the under bump metallurgy layer of the wafer under this condition. The method to form solder bump on the wafer can be dipping technology or screen printing technology. The steps of dipping technology are: disposing the wafer in the solder furnace of the vacuum system or heating system, and installing a printing scraper blade contacting the wafer surface at the position of flux or solder paste surface in the solder furnace. Withdraw the wafer along the tilted disposition direction, the printing scraper blade is fixed at this time, so that the flux or solder paste is filled into the position of photoresist opening on the under bump metallurgy layer, and the redundant flux or solder paste is also scraped. After the flux or solder paste is cooled down, remove the photoresist and leave the solder ingot on the under bump metallurgy layer, and further etch away the under bump metallurgy layer between the solder ingots, so that the solder ingot is isolated on the island of the under bump metallurgy layer. Afterwards, proceed the reflow furnace process of solder ingot, so that the solder ingot can be extended into a solder bump with a perfect spherical surface shape. Another embodiment is the screen printing technology, which is to dispose the wafer horizontally inside the vacuum system and heating system, drop proper amount of flux or solder paste on one side of the wafer surface, and scrape it with a printing scraper blade toward the wafer surface to fill the flux or solder paste into the position of photoresist opening on the under bump metallurgy layer. After cooling down, leave the solder ingot and etch the under bump metallurgy layer between the solder ingots, and perform reflow soldering to make it into the solder bump.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-109753088-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-100382266-C
priorityDate 2002-10-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524915
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5352426

Total number of triples: 41.