http://rdf.ncbi.nlm.nih.gov/pubchem/patent/TW-201712170-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_c2518841b981ef013c12f28cffdd0ea4
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B33-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01T1-2023
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B15-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B29-34
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B15-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B29-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B33-02
filingDate 2015-09-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5f51ec40d01b5c6d91e806ca480e1b11
publicationDate 2017-04-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber TW-201712170-A
titleOfInvention Double doped scintillation crystal manufacturing method
abstract A method for preparing a double-doped scintillation crystal by using a Czochralski (Cz) method to grow a double-doped yttrium and a calcium or a magnesium element rare earth lanthanide single crystal rod, which is produced by doping calcium or magnesium Charge Compensation, which causes the charge compensation of calcium or magnesium and yttrium tetravalent (Ce+4) to produce yttrium trivalent (Ce+3) to form a calcium lanthanide double doped rare earth strontium single crystal. a rod or a magnesium-doped double-doped rare earth silicate single crystal rod, which is then placed in a high temperature apparatus for thermal annealing treatment, the calcium lanthanum double doped rare earth silicate single crystal rod or the magnesium lanthanum The double-doped rare earth strontium single crystal rod is heated from room temperature to between 1400 and 1600 ° C, and then subjected to a temperature-reaction time, followed by a temperature-lowering step. Thereby, the present invention performs thermal annealing treatment under the atmosphere, and the thermal annealing can greatly reduce the fragmentation of the crystal during processing, and can improve the yield of the pixel sample after the crystal cutting and polishing, and has the process cost. Low, high yield, less crystal fragmentation, high light intensity and short decay time.
priorityDate 2015-09-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559505
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451096186
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5462224
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419528302
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID164181625
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577481
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577458
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5460341
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10469
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453483860
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451750347
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID56842922
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559552
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23993
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5359327
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23974
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23929
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID18149
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458437476
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577471

Total number of triples: 36.