http://rdf.ncbi.nlm.nih.gov/pubchem/patent/TW-200531323-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9019c0ce5cb7b82c85e121f6cac86dce
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y10-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N59-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N50-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N50-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G11C11-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10B61-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G11C11-15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G11C11-161
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L27-105
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L28-55
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01F10-132
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10B53-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y25-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10B61-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N50-85
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01F10-3254
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N50-80
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L27-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-8246
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L27-105
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L43-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L43-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L43-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G11C11-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01F10-32
filingDate 2005-03-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f5e323b39acfe2f2f2134b98f974f11e
publicationDate 2005-09-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber TW-200531323-A
titleOfInvention Magnetoresistive element and method of manufacturing the same
abstract A manufacturing method for a magnetoresistive element is provided, in which a single crystal MgO (001) substrate 11 is prepared, an epitaxial Fe (001) lower electrode (the 1st electrode) 17 with 50 nm thickness is grown at room temperature on a MgO (001) seed layer 15, then in a super-high vacuum (2×10<SP>-8</SP>Pa), an anneal process is performed at 350 DEG C. A MgO (001) barrier-layer 21 with 2 nm thickness is epitaxially grown on the Fe (001) lower electrode (the 1st electrode) 17 at room temperature. At this time, an electronic beam evaporation for MgO is used. A Fe (001) upper electrode (the 2nd electrode) 23 with 10 nm thickness is formed at room temperature on a MgO (001) barrier layer 21. Then, a Co layer 25 with 10 nm thickness is deposited on the Fe (001) upper electrode (the 2nd electrode) 23. The Co layer 25 is used to realize an anti-parallel magnetization arrangement by means of increasing the holding force of the upper electrode 23. Then, the above manufactured material is finely processed and an Fe (001)/MgO(001)/Fe(001) TMR element is formed. Thus the output voltage of the MRAM can be increased.
priorityDate 2004-03-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID183298
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491805
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23985
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID482532689
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID390418
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID390418
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14792
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419583196
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23940
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID183298
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID104727
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577462

Total number of triples: 46.