http://rdf.ncbi.nlm.nih.gov/pubchem/patent/RU-2221746-C2

Outgoing Links

Predicate Object
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G35-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G33-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01D15-00
filingDate 2002-03-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2004-01-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_327f0b24423715622ac262e3ae2b8a69
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b140469913cc501b480694086e156123
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fead718e667a443999667ccfe3212412
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0512504a92fd604445cd14747d7d6266
publicationDate 2004-01-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber RU-2221746-C2
titleOfInvention Method of decomposition of wastes of refractory metals with lithium compound monocrystals production
abstract FIELD: chemical industry and hydrometallurgy. SUBSTANCE: the invention presents a method of decomposition of waste products of production of refractory metals with lithium compound monocrystals. The method may be used in reprocessing of waste products of production of refractory metals with alkali metals compound monocrystals, in particular , in production of lithium methatantalate and niobate, with production of high-clean compounds of refractory metals with lithium, fit for repeated monocrystal growing. Waste products of lithium methatantalate or niobate, communited up to particle size of less than 160 microns, are sintered for 1-2 hours with lithium carbonate at its 2-10 % surplus and the temperature of 800-1000 C with production of a cake of the joint of a composition of a refractory metal with lithium in the ortho - form. The produced cake is heated and lixiviated by a mixture of concentrated hydrochloric and hydrofluoric acids taken at ratio of H: L of no more than 0.16 with transformation in a solution, alongside with lithium, and a refractory metal, and hydrofluoric acid is fed in the amount ensuring a molar ratio of the refractory metal and a fluorine equal to 1: 4-7. For the lixiviation they use 35-39 % hydrochloric and 40-47 % hydrofluoric acids. Lixiviation of lithium orthotantalate is conducted at the temperature of 40-70 C, and lithium orthoniabate - at the temperature of 8-50 C. Lithium methatantalate may contain alloying additives of chromium and neodymium, and lithium methaniobate - the additive of magnesium, which in the process of the cake lixiviation are also passing into the solution. Application of the offered method allows within a limited duration of operations of sintering and lixiviations to transform practically all lithium, tantalum or niobium and alloying additives into a solution. At consequent extraction reprocessing of the solution the high-clean compounds of tantalum or niobium are produced, and also lithium chloride, that is easily regenerated into lithium carbonate. All produced products may be reutilized for preparation of a charge in production of monocrystals of methatantalate or lithium niobate. At realization of a method the standard equipment is used. EFFECT: the method allows to transform practically all lithium, tantalum or niobium and alloying additives into a solution with possibility of their following regeneration for usage in monocrystals production. 7 cl, 11 ex
priorityDate 2002-03-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559587
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5462224
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450422860
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453711421
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11125
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10815
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453139602
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419514322
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419593443
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID433294
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23956
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450408979
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458391465
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577468
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3028194
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412483216
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23936
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559552
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449160084
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419577475
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457280313
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23934
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID123105
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14935
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID224478
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411285263
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23235968
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID518712
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14917
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9903420
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451883251
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419530175
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458403899
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559562
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416641266
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23976
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557048
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID166630
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID159404
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23665650
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10154294
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453918477

Total number of triples: 58.