http://rdf.ncbi.nlm.nih.gov/pubchem/patent/RU-2014133747-A

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K2208-24
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K8-685
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K8-90
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09K8-887
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C09K8-68
filingDate 2013-01-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2016-03-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber RU-2014133747-A
titleOfInvention COMPOSITIONS SUITABLE FOR HYDROLYSIS OF GUAR GUM IN MEDIA WITH HIGH pH VALUES, AND WAYS RELATED TO THEM
abstract 1. A method of hydraulic fracturing an underground formation surrounding a wellbore, the method comprising the following steps: a) combining an aqueous fluid capable of hydrating a polymer, a crosslinking agent, and an enzymatic destructive agent selected from an alkaliphilic bacterium selected from the group consisting of family 5 glycoside hydrolases, family of 26 glycoside hydrolases and mixtures thereof, to obtain a fluid based on a crosslinked polymer; b) injection of a gel based on a crosslinked polymer into the wellbore and in contact with formation under pressure sufficient to fracture the surrounding underground formation; and c) allowing the enzyme degrading agent to break the crosslinked polymer gel so that it can be removed from the subterranean formation, while the enzyme degrading agent is catalytically active and thermally stable in the temperature range from about 60 ° F to about 225 ° F and at pH in the range from about 7 to about 12.2. The method of claim 1, wherein the enzymatic destructuring agent is selected from the glycoside hydrolase family of 5. The method of claim 1, wherein the enzymatic destructuring agent is selected from subfamily 8 of family 5 of glycosidhydrolases. The method of claim 1, wherein the enzymatic destructuring agent is selected from the family of 26 glycosidhydrolases. The method of claim 2, wherein the enzymatic destructuring agent is selected from the group consisting of endoglucanase, beta-mannanase, exo-1,3-glucanase, endo-1,6-glucanase, xylanase, endoglycekeramidase. The method of claim 1, wherein the enzymatic destructuring agent is selected from the glycoside hydrolase family of 5 and is derived from the alkaliphilic gene of Bacillus sp. N16-5.7. The method of claim 1, wherein the enzymatic degradation
priorityDate 2012-01-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A024SNB7
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP81190
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP27035
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP17974
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP46236
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP10476
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP58935
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP84194
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8RSY9
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP46239
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP18336
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP13933
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP46237
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A024SH20
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07982
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP23665
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP21834
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29127
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8ZLB7
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ4FZV0
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07981
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8Z289
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCD3GDK4
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP10475
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8AAK6
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ12714
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP15704
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07983
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456490753
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO00462
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP23549
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP37696
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ05622
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP58599
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP21833
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP23548
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP22699
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ12622
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8K2I4
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP82186
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ29444
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP16216
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP19487
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP84196
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP15329
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO97401
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCC0HJH0
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP14768
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP45699
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ95327
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8X5L9
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP18126
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP37651
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP22669
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ12667
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29019

Total number of triples: 70.