http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20210097419-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9855f5df7a5a0764a4399ef992b9de05
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-64
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01F17-235
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01F17-10
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01F17-235
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01F17-10
filingDate 2020-01-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2dcaf668bfa0bd22c180e6d5d8af12f1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8afca8315b69d1b8a37607e96162ce73
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_63d46c473691a6d1256ceda693e42a17
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c87ebd8266f546ed3ff94228d39ad3ee
publicationDate 2021-08-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-20210097419-A
titleOfInvention Manufacturing method of nano-sized powder having excellent dispersibility and uniform particle size
abstract The present invention synthesizes a nanopowder based on a coprecipitation method and a hydrothermal (or solvothermal) synthesis method, but (a) adding a basic material to the first nanoparticle precursor solution to adjust the pH to prepare a first nanoparticle precipitation solution ; (b) recovering the first nanoparticles after stirring by adding a surfactant to the first nanoparticle precipitation solution; (c) synthesizing second nanoparticles from the first nanoparticles; and (d) adding silane and a dispersing agent to the solution in which the second nanoparticles are dispersed and stirring; According to , by adding a surfactant when forming nanoparticles through the co-precipitation method, the first nanoparticles having excellent dispersibility and uniform particle size distribution can be prepared, and the first nanoparticles obtained using the co-precipitation method are heat-treated or The second nanoparticles prepared by hydrothermal (or solvothermal) reaction are dispersed in an aqueous or non-aqueous solvent together with various silane coupling agents, pH adjusters (acid or base) and polymeric dispersants to obtain excellent dispersibility and uniform particle size distribution. Eggplant nanopowder can be prepared, and the nanopowder prepared by the present invention has improved dispersibility compared to the prior art and can be sintered at a temperature lower than the generally known sintering temperature, thereby improving the properties of the sintered body.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20230112818-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2022181850-A1
priorityDate 2020-01-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2008501509-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20180039882-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-101959045-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20050099916-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559517
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID76486
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1176
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23953
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID175
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454387232
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415767842
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID311
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453092551
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453666896
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453327643
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14798
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14923
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452162289
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24948
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14797
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID87092907
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4068533
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6515
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410697574
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID79204
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419483880
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419596818
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453715328
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419528912
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID312
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458434260
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409060395
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID17318
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16211466
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449477149
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451221555
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID943
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559568
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID961
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16241
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID413832638
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID406903349
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474445
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22237030
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474137
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID85102
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414879359
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14456
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859240
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID82764
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283

Total number of triples: 71.