http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20190107921-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_feb03de036e93e10c4497dcbf96d3911
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-30
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-30
filingDate 2018-03-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d087626593b5704223556165d4c259ac
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7c1d3802ea6081a76302d06371384f49
publicationDate 2019-09-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-20190107921-A
titleOfInvention ELECTROCHEMICAL SENSOR DETECTING NITROBENZENE USING Au-Ag ALLOY NANODOTS AND METHOD OF THE SAME
abstract The present invention relates to an electrochemical sensor for detecting nitrobenzene using gold-silver alloy nanodots and a method of manufacturing the same. More specifically, a silicate sol-gel matrix (SSG) embedded with gold-silver alloy nanodots is embedded on a glassy carbon electrode surface. By modifying with -AuAg NDs), it is possible to exhibit an excellent electrocatalytic effect on nitrobenzene reduction and as a result excellent sensor characteristics upon detection of nitrobenzene. It also has the effect of synthesizing silicate sol-gel matrices embedded with gold-silver alloy nanodots of 3 nm or less by single step synthesis without the use of harmful reducing agents such as hydrazine, sodium borohydride and alkyltrimethyl ammonium halides.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20210144458-A
priorityDate 2018-03-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454306093
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23985
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID431577085
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID69321
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559527
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526829
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11087
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID482532689
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451404211
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415742426
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458434260
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579292
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23953
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61191
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410490241
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7416
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID91501
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4311764
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11173138
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559020
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578882
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5460531
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9321
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448708270
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546359
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453813490
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID413371329
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22959485
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID104812
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID161636847
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26030
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID90469951

Total number of triples: 49.