http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20170055012-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_465b607edb4c88aeefb4958e154efaec
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_f402d1f8d42afe235f91a1b5c57b8c47
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_9d98762490c9bfd1551fefe55f49ea2c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_6b3e3de86fb3a7d008414342c8035051
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N2310-531
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61K47-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61K48-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61K47-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N15-113
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61K47-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61K47-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N15-113
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61K48-00
filingDate 2017-04-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b4954f534b127945fdf513b6fceed957
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c4cc732d2172b9332a1adbb6867683c9
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b0ad431eccc8d961c0d281a7e02f3a85
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dbabe37ddb7e970568d96988fa515578
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e02b42d22594a1a8f25c59fdef6c7146
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_89ca3680b626f4be64ec6003527a8a8a
publicationDate 2017-05-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-20170055012-A
titleOfInvention Nanoparticles for genes drug delivery with siRNA for the long -term treatment of retinal disorders and method for preparing the same
abstract The present invention relates to a self-assembled and condensed high molecular weight siRNA core particle and a particle for efficiently delivering a large amount of siRNA into the inside of the retina by coating the outside with a cationic polymer and hyaluronic acid, and a method for producing the same. Since the core of the present invention contains at least 1 x 10 6 small interfering RNA (siRNA) or antisense nucleic acids, it can deliver a larger amount of siRNA than the conventional one. By coating the outer shell with (-) charged hyaluronic acid, it is possible to prevent aggregation with the vitreous meshwork structural materials having (-) charge and reach the inner limiting membrane of the retina. In addition, hyaluronic acid binds to the CD44 receptor of Muller cells, allowing the structure of the retina to pass through the sub-retinal space through the transcytosis mechanism. Some of them inhibit the translation of target gene mRNA in Muller cells, and many of them bind to the CD44 receptor present in the retinal pigment epithelial (RPE) cell membrane and enter the cell to analyze the mRNA of the target gene in RPE translation.
priorityDate 2017-04-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID43826
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447757059
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID396526
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID81822
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID728378
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID280979
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP49151
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID395909
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID11461
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP50412
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP35396
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID57934
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCH0ZCS4
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419484714
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP15691
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID30682
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A3Q2TVI4
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6437371
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID398459
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCF6QDM7
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP15692
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID60
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7327
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID281572
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID83785
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ00731
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO01945
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ03181
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID64965
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP83906
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9MYV3
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID558154
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP16612
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9GKR0
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP67860
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ99PS1
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCC0K3N4
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1102
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414861628
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426107279
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID403580
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP26617
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP67964
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCC0K3N5
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID22339
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23663392
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100136352
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID403802
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID414396
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID7422
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450770914
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID450133
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP67965

Total number of triples: 79.